
Java:
Learning to Program with Robots

Chapter 04: Making Decisions

C
ha

pt
er

 O
bj

ec
tiv

es

After studying this chapter, you should be able to:
• Use an if statement to perform an action once or not at all.
• Use a while statement to perform an action zero or more times.
• Use an if-else statement to perform either one action or another

action.
• Describe what conditions can be tested and how to write new tests.
• Write a method, called a predicate, that can be used in the test of an

if or while statement.
• Use parameters to communicate values from the client to be used in

the execution of a method.
• Use a while statement to perform an action a specified number of

times.

4.
1:

 U
nd

er
st

an
di

ng
 T

w
o

K
in

ds
 o

f D
ec

is
io

ns

So far, programs have
• executed one statement after another (sequential execution)
• executed all the statements in a method, and then returned

Examples of problems that can’t be solved this way:

• Move to a wall when it’s not
known how far away the
wall is.

• Pick up all the Things in a

row where some
intersections have nothing
on them.

In each case, use the same program to solve the different variations of
the same problem. This requires our programs to make decisions.

4.
1:

 U
nd

er
st

an
di

ng
 T

w
o

K
in

ds
 o

f D
ec

is
io

ns

 if statement while statement
Question: Should this group of

statements be executed
once or not at all?

Should this group of
statements be executed again?

Flow-
chart: true?

false

true?
false

Example:

if (karel.canPickThing())
{ karel.turnLeft();
}
karel.move();

while (karel.canPickThing())
{ karel.turnLeft();
}
karel.move();

4.
1.

2:
 E

xa
m

in
in

g
an

 if
 S

ta
te

m
en

t
(1

/2
)

if (karel.frontIsClear())

{ karel.move();
}
karel.turnLeft();

if (karel.frontIsClear())

{ karel.move();
}
karel.turnLeft();

if (karel.frontIsClear())

{ karel.move();
}
karel.turnLeft();

4.
1.

2:
 E

xa
m

in
in

g
an

 if
 S

ta
te

m
en

t (
2/

2)

if (karel.frontIsClear())
{ karel.move();
}

karel.turnLeft();

if (karel.frontIsClear())
{ karel.move();
}

karel.turnLeft();

4.
1.

3:
 E

xa
m

in
in

g
a

w
hi

le
 S

ta
te

m
en

t (
1/

2)

while (karel.frontIsClear())
{ karel.move();
}

karel.turnLeft();

while (karel.frontIsClear())
{ karel.move();
}

karel.turnLeft();

while (karel.frontIsClear())

{ karel.move();
}

karel.turnLeft();

while (karel.frontIsClear())
{ karel.move();
}

karel.turnLeft();

4.
1.

3:
 E

xa
m

in
in

g
a

w
hi

le
 S

ta
te

m
en

t (
2/

2)

while (karel.frontIsClear())

{ karel.move();
}
karel.turnLeft();

while (karel.frontIsClear())
{ karel.move();
}
karel.turnLeft();

4.
1.

4:
 T

he
 G

en
er

al
 F

or
m

s
of

 if
 a

nd
 w

hi
le

The General Form of an if Statement:
if («test»)
{ «list of statements»
}

Examples:
if (karel.canPickThing())
{ karel.pickThing();
 karel.turnLeft();
}

if (this.frontIsClear())
{ this.move();
}

The General Form of a while Statement:
while («test»)
{ «list of statements»
}

Examples:
while (karel.canPickThing())
{ karel.pickThing();
 karel.turnLeft();
}

while (this.frontIsClear())
{ this.move();
}

4.
2:

 Q
ue

st
io

ns
 R

ob
ot

s
C

an
 A

sk

Can I pick up a Thing from this intersection?
How many Things are in my backpack?
Is the path in front of me clear of obstructions (like walls)?
Which avenue am I on?
Which direction am I facing?
What string of characters is
labelling me?
What is my speed?
What street am I on?

Questions with a true or
false answer, like
canPickThing, are called
predicates.

Robot

int street
int avenue
Direction direction
ThingBag backpack
+Robot(City aCity, int aStreet, int anAvenue,
 Direction aDirection)
+boolean canPickThing()
+int countThingsInBackpack()
+boolean frontIsClear()
+int getAvenue()
+Direction getDirection()
+String getLabel()
+double getSpeed()
+int getStreet()

4.
2.

2:
 N

eg
at

in
g

Pr
ed

ic
at

es

Negating a predicate gives it the opposite meaning.

// in pseudocode
if (karel cannot pick a thing)
{ put a thing down
}

// in Java
if (!karel.canPickThing())
{ karel.putThing();
}

Exercise: Karel is moving through an area where it might be blocked
by a wall. Each time it is blocked, it should turn left to find a direction
in which it can move. There will always be at least one such direction.
Here are some possible situations:
Initial
Situations
Final
Situations
Write a code fragment to implement this behavior.

4.
2.

3:
 T

es
tin

g
In

te
ge

r Q
ue

rie
s Queries like getAvenue do not return true or false, they return an

integer such as 0 or 3. Can they be used in an if or while statement?

if (karel.getStreet() == 1)
{ karel.turnAround();
}

• What happens if karel
is on 2nd Street?

• What happens if karel
is on 1st Street?

while (karel.countThingsInBackpack() < 4)
{ karel.pickThing();
}

• What happens if karel already has 2
Things in its backpack?

• What happens if karel already has 6
Things in its backpack?

Comparison Operators:

< less than > greater than == equal
<= less than

or equal
>= greater than

or equal
!= not equal

C
as

e
St

ud
y:

 C
ol

le
ct

in
g

Tr
as

h Some irresponsible people have been pitching their trash over the fence
and into your yard. Proud of your property’s appearance, you develop
a specialized robot to pick up the trash. Knowing your neighbors have
similar problems, you design the robot to collect garbage from fenced
yards with arbitrary dimensions. The only restriction is that they are
rectangular and the northwest corner is at (0, 0). The trash is always
beside the fence and consists of a single Thing.

C
as

e
St

ud
y:

 T
he

 m
ai

n
M

et
ho

d import becker.robots.*;

/** Collect the trash from a rectangular fenced yard of arbitrary size.
*
* @author Byron Weber Becker */
public class CollectTrash
{
 public static void main(String[] args)
 {
 City yard = new City("yard1.txt");
 TrashBot karel = new TrashBot(yard);

 karel.collectTrash();
 }
}

The City class can read
a file to tell where to
put Walls and Things.
This allows easy
testing with several
different yards.

We’ll always create the
TrashBot at (0, 0)
facing East. All we
need to provide here is
the city.

C
as

e
St

ud
y:

 C
on

fig
ur

in
g

th
e

C
ity

 # A City with a fenced yard and trash.

Window title
Robots: Learning to program with Java
first street, first avenue, num streets, num avenues showing
0 0 7 7
intersection size (in pixels)
48

North fence
becker.robots.Wall 0 0 NORTH
becker.robots.Wall 0 1 NORTH
becker.robots.Wall 0 2 NORTH
becker.robots.Wall 0 3 NORTH
becker.robots.Wall 0 4 NORTH

Similar for South, East, and West fences

Trash
becker.robots.Thing 0 1
becker.robots.Thing 0 3
becker.robots.Thing 4 2
becker.robots.Thing 1 4
becker robots Thing 3 4

Comments begin with #.

A title, information about
which roads to show, and
how large to make
intersections is required.

Objects to add to the city.
Each line has the
complete class name of
the object to create and
values corresponding to
one of its constructors. It
is assumed the first
argument to the
constructor is the city.

C
as

e
St

ud
y:

 T
ra

sh
B

ot
 (1

/6
) import becker.robots.*;

/** A robot that collects trash along a rectangular fenced yard.
*
* @author Byron Weber Becker */
public class TrashBot extends RobotSE
{
 /** Construct a TrashBot at (0,0) facing East. */
 public TrashBot(City c)
 { super(c, 0, 0, Direction.EAST);
 }

 /** Collect the trash along a fenced yard. */
 public void collectTrash()
 {
 }
}

C
as

e
St

ud
y:

 T
ra

sh
B

ot
 (2

/6
) import becker.robots.*;

public class TrashBot extends RobotSE
{
 public TrashBot(City c)… // done

 /** Collect the trash along a fenced yard. */
 public void collectTrash()
 { this.collectOneSide();
 this.collectOneSide();
 this.collectOneSide();
 this.collectOneSide();
 }

 /** Collect the trash along one side of the fence, stopping at the corner. */
 private void collectOneSide()
 {
 }
}

C
as

e
St

ud
y:

 T
ra

sh
B

ot
 (

3/
x)

 import becker.robots.*;

public class TrashBot extends RobotSE
{
 public TrashBot(City c)… // done
 public void collectTrash()… // done

 /** Collect the trash along one side of the fence, stopping at the corner. */
 private void collectOneSide()
 { while (this robot is not blocked by the fence on the next side)
 { pick up the trash on this intersection (if any)
 move to the next intersection
 }
 this.turnRight();
 }
}

C
as

e
St

ud
y:

 T
ra

sh
B

ot
 (

4/
6)

 import becker.robots.*;

public class TrashBot extends RobotSE
{
 public TrashBot(City c)… // done
 public void collectTrash()… // done

 /** Collect the trash along one side of the fence, stopping at the corner. */
 private void collectOneSide()
 { while (this.frontIsClear())
 { this.pickupTrash();
 this.move();
 }
 this.turnRight();
 }

 /** Pick the trash at this location. */
 private void pickTrash()
 {
 }
}

C
as

e
St

ud
y:

Tr

as
hB

ot
 (5

/6
) import becker.robots.*;

public class TrashBot extends RobotSE
{
 public TrashBot(City c)… // done
 public void collectTrash()… // done
 private void collectOneSide()… // done

 /** Pick the trash at this location. */
 private void pickTrash()
 { if (this robot is beside some trash)
 { pick it up
 }
 }
}

C
as

e
St

ud
y:

 T
ra

sh
B

ot
 (

6/
6)

 import becker.robots.*;

public class TrashBot extends RobotSE
{
 public TrashBot(City c)… // done
 public void collectTrash()… // done

 /** Collect the trash along one side of the fence, stopping at the corner. */
 private void collectOneSide()
 { while (this.frontIsClear())
 { this.pickupTrash();
 this.move();
 }
 this.turnRight();
 }

 /** Pick the trash at this location. */
 private void pickTrash()
 { if (this.canPickThing())
 { this.pickThing();
 }
 }
}

4.
4:

 U
si

ng
 th

e
if-

el
se

 S
ta

te
m

en
t if statement if-else statement

Question: Should this group of
statements be executed
once or not at all?

Which group of statements
should be executed once – this
group or that group?

Flow-
chart: true?

false

true?false

Example:

if (karel.canPickThing())
{ karel.turnLeft();
}
karel.move();

if (jess.canPickThing())
{ jess.turnLeft();
} else
{ jess.turnRight();
}
jess.move();

4.
5:

 W
rit

in
g

Pr
ed

ic
at

es

Well-named tests and avoiding not (!) in if and while statements make
our code easier to read and understand. For example:
Harder:

if (!this.frontIsClear())
{ this.turnLeft();
}

Easier:
if (this.frontIsBlocked())
{ this.turnLeft();
}

We can add our own predicates to a subclass of Robot, just like we can
add our own commands. Use the following template:
«accessModifier» boolean «predicateName»(«optionalParameters»)
{ return «booleanExpression»
}

Exercises:
• Is this robot’s front blocked?
• Is this robot on fifth avenue?
• Is this robot facing south?

4.
6:

 P
ar

am
et

er
s Purpose: To provide additional information to a constructor or

method.
Usage
Example:

MyBot karel = new MyBot(ny, 0, 1, Direction.EAST);
Which city?

Which street?
Facing which
direction?

Which avenue?
These values are called arguments. They are also called
actual parameters.

Declaration
Example:

public MyBot(City aCity, int aStr, int anAve, Direction aDir);

Four parameter
declarations

Parameter's type Parameter's name

These pairs are called formal parameters, or simply
parameters. Consecutive pairs are separated by commas.
Each parameter has the value of the corresponding
argument.

4.
6:

 U
si

ng
 P

ar
am

et
er

s
in

 P
re

di
ca

te
s Without parameters:

Usage
Example:

if (this.isOnFifthAvenue())
{ this.turnAround();
}

Declaration: public boolean isOnFifthAvenue()
{ return this.getAvenue() == 5;
}

With parameters:

Usage
Example:

if (this.isOnAvenue(5))
{ this.turnAround();
}

Declaration: public boolean isOnAvenue(int anAve)
{ return this.getAvenue() == anAve;
}

4.
6:

 U
si

ng
 P

ar
am

et
er

s Use a parameter to generalize the following predicate:

public boolean isFacingSouth()
{ return this.getDirection() == Direction.SOUTH;
}

Write a predicate that will determine if a robot has at least x Things in
its backpack, where x is specified as a parameter.
Usage examples: if (this.hasAtLeast(5)) …
 if (this.hasAtLeast(500)) …

4.
6.

1:
 U

si
ng

 a
 w

hi
le

 S
ta

te
m

en
t &

 a
 P

ar
am

et
er

Parameters may also be used with commands. Both of these examples
assume karel’s current avenue is less than 50.

Example without parameters:

Usage Example: karel.moveToAvenue50();
Declaration:

public void moveToAvenue50()
{ while (this.getAvenue() < 50)
 { this.move();
 }
}

Example with parameters:
Usage Example: karel.moveToAvenue(50);
Declaration:

public void moveToAvenue(int ave)
{ while (this.getAvenue() < ave)
 { this.move();
 }
}

4.
6.

1:
 U

si
ng

 a
 w

hi
le

 S
ta

te
m

en
t &

 a
 P

ar
am

et
er

Write methods to implement the following commands:

karel.carryAtLeast(50) instructs the robot karel to pick up things from
the current intersection so that it is carrying at least 50 things.

karel.face(Direction.EAST) causes the robot karel to turn left until it
is facing East.

karel.moveToAvenue(5) causes the robot karel to move to avenue 5.
Unlike the previous example, karel’s current avenue is unspecified. It
may be less than, greater than, or even equal to the given argument.
Simplify your solution by using face. Apply stepwise refinement.

4.
6.

2:
 U

si
ng

 A
ss

ig
nm

en
t w

ith
 a

 L
oo

p Consider the following ill-advised method:
public void step(int howFar)
{ while (howFar > 0)
 { this.move();
 }
}

If we could implement the pseudocode addition, what would the
method do?

public void step(int howFar)
{ while (howFar > 0)
 { this.move();
 make howFar one less than it is now
 }
}

4.
6.

2:
 T

ra
ci

ng
 s

te
p(

in
t h

ow
Fa

r)

while (howFar > 0)

{ this.move();

make howFar one less than it is now
}

howFar
is 4

while (howFar > 0)

{ this.move();

make howFar one less than it is now
}

howFar
is 3

while (howFar > 0)

{ this.move();

make howFar one less than it is now
}

howFar
is 2

howFar
is 1

howFar
is 0

while (howFar > 0)

{ this.move();

make howFar one less than it is now
}

howFar
is 0

C
as

e
St

ud
y:

 R
ec

ta
ng

le
Pl

an
te

r (
1/

5)

Develop a new kind of robot that can plant flowers in a rectangle, the
size of which is specified using parameters. Two examples are:
Initial
Situation

0 1 2

0

1

2

3 4

0 1 2

0

1

2

3

Command karel.plantRect(5, 3); karel.plantRect(3, 4);
Final
Situation

0 1 2

0

1

2

3 4

0 1 2

0

1

2

3

C
as

e
St

ud
y:

 R
ec

ta
ng

le
Pl

an
te

r (
2/

5)
 import becker.robots.*;

/** A class of robots that plants Things in the form of a hollow rectangle.
*
* @author Byron Weber Becker */
public class RectanglePlanter extends RobotSE
{
 /** Create a new rectangle planter.
 * @param aCity The robot's city.
 * @param aStreet The robot's initial street.
 * @param anAvenue The robot's initial avenue.
 * @param aDir The robot's initial direction.
 * @param numThings The number of things initially in the robot's backpack. */
 public RectanglePlanter(City aCity, int aStreet, int anAvenue,
 Direction aDir, int numThings)
 { super(aCity, aStreet, anAvenue, aDir, numThings);
 }

 /** Plant a hollow rectangle of Things. The robot must be positioned in the
 * rectangle's upper-left corner facing east.
 * @param width The number of avenues wide.
 * @param height The number of streets high. */
 public void plantRect(int width, int height)
 {
 }
}

C
as

e
St

ud
y:

 R
ec

ta
ng

le
Pl

an
te

r (
3/

5)
 import becker.robots.*;

public class RectanglePlanter extends RobotSE
{
 public RectanglePlanter(…)… // done

 public void plantRect(int width, int height)
 { this.plantSide(width);
 this.plantSide(height);
 this.plantSide(width);
 this.plantSide(height);
 }

 /** Plant one side of the rectangle; make the side ‘length’ intersections long, but plant
 * one less Thing to avoid duplicationg at
 * the corners. */
 protected void plantSide(int length)
 {
 }
}

0 1 2

0

1

2

3 4

C
as

e
St

ud
y:

 R
ec

ta
ng

le
Pl

an
te

r (
4/

5)
 import becker.robots.*;

public class RectanglePlanter extends RobotSE
{
 public RectanglePlanter(…)… // done
 public void plantRect(int width, int height) // done

 /** Plant one side of the rectangle; make the side ‘length’ intersections long, but plant
 * one less Thing to avoid duplicationg at
 * the corners. */
 protected void plantSide(int length)
 { length = length – 1;
 this.plantLine(length);
 this.turnRight();
 }

 /** Plant one side of the rectangle with Things,
 * beginning with the next intersection. */
 protected void plantLine(int len)
 {
 }
}

0 1 2

0

1

2

3 4

C
as

e
St

ud
y:

 R
ec

ta
ng

le
Pl

an
te

r (
5/

5)
 public class RectanglePlanter extends RobotSE

{
 public RectanglePlanter(…)… // done
 public void plantRect(int width, int height) // done
 protected void plantSide(int length) // done
 { length = length – 1;
 this.plantLine(length);
 this.turnRight();
 }

 /** Plant one side of the rectangle with Things,
 * beginning with the next intersection. */
 protected void plantLine(int len)
 { while (len > 0)
 { this.move();
 this.plantIntersection();
 len = len – 1;
 }
 }
 protected void plantIntersection()
 { this.putThing();
 }
}

0 1 2

0

1

2

3 4

4.
7:

 S
ca

lin
g

Im
ag

es
 public class StickFigure extends JComponent

{ public StickFigure ()
 { super ();
 Dimension prefSize = new Dimension(180, 270);
 this.setPreferredSize(prefSize);
 }

 // Paint a stick figure.
 public void paintComponent(Graphics g)
 { super.paintComponent(g);

 g.setColor(Color.YELLOW); // head
 g.fillOval(60, 0, 60, 60);

 g.setColor(Color.RED); // shirt
 g.fillRect(0, 60, 180, 30);
 g.fillRect(60, 60, 60, 90);

 g.setColor(Color.BLUE); // pants
 g.fillRect(60, 150, 60, 120);
 g.setColor(Color.BLACK);
 g.drawLine(90, 180, 90, 270);
 }
}

Changing the
preferred size of
the component to
(90, 135) results in:

4.
6.

1:
 U

si
ng

 S
iz

e
Q

ue
rie

s Approach:
1. Use a grid to identify significant points in the drawing.

Think of this grid as a new coordinate system.
The head is enclosed in a square with (2,0) as
the upper left corner and (4,2) as the lower
right corner.
These coordinates are independent of the
actual size of the component.

2. Use this.getWidth() and this.getHeight() to obtain the actual size
of the component (in pixels).

3. Combine 1 and 2 to specify where to draw:
g.fillOval(this.getWidth()*2/6, // x coord of head is 2/6 of comp’s width
 this.getHeight()*0/9, // y coord of head is 0/9 of comp’s height
 this.getWidth()*2/6, // head is 2/6 of component’s width
 this.getHeight()*2/9); // head is 2/9 of component’s height

4.
7.

2:
 S

ca
lin

g
an

 Im
ag

e public class StickFigure extends JComponent
{ // Constructor omitted
 public void paintComponent(Graphics g)
 { super.paintComponent(g);

 // standard stuff to scale the image
 Graphics2D g2 = (Graphics2D)g;
 g2.scale(this.getWidth()/6, this.getHeight()/9);
 g2.setStroke(new BasicStroke(1.0F/this.getWidth()));

 g2.setColor(Color.YELLOW.); // head
 g2.fillOval(2, 0, 2, 2);

 g2.setColor(Color.RED); // shirt
 g2.fillRect(0, 2, 6, 1);
 g2.fillRect(2, 2, 2, 3);

 g2.setColor(Color.BLUE); // pants
 g2.fillRect(2, 5, 2, 4);
 g2.setColor(Color.BLACK);
 g2.drawLine(3, 6, 3, 9);
 }
}

90 x 135

150 x 180

4.
8.

1:
 T

he
 O

nc
e

or
 N

ot
 a

t A
ll

Pa
tte

rn

Name: Once or Not at All
Context: A group of statements must be executed once or not at all,
based on the value of a Boolean expression.
Solution: Use an if-statement, for example:

if (this.canPickThing())
{ this.pickThing();
}

if (this.numStudentsInCourse() < 100)
{ this.addStudentToCourse();
}

In general,
if («test»)
{ «list of statements»
}

Consequences: Programs are able to respond differently, depending
on the situation.
Related Patterns: The Either This or That pattern executes one of
two groups of statements. The Zero or More Times pattern is used if
statements must be executed repeatedly rather than once or not at all.

4.
8.

2:
 T

he
 Z

er
o

or
 M

or
e

Ti
m

es
 P

at
te

rn

Name: Zero or More Times
Context: A group of statements must be executed an unknown
number of times: as few as zero, possibly many times. Whether to
execute the statements again can be determined with a Boolean
expression.
Solution: Use a while-statement, for example:

while (this.frontIsClear())
{ this.turnLeft();
}

while (this.countThingsInBackpack() < 4)
{ this.pickThing();
}

In general,
while («test»)
{ «list of statements»
}

Consequences: The «list of statements» may be executed as few
as zero times or many more, depending on the outcome of the «test».
Related Patterns: The Once or Not At All and Either This or That
patterns execute a group of statements once or not at all.

4.
8.

3:
 T

he
 E

ith
er

 T
hi

s
or

 T
ha

t P
at

te
rn

Name: Either This or That
Context: One of two groups of statements, either this group or that
group, must be executed. Which group to execute depends on the
outcome of a Boolean expression.
Solution: Use an if-else statement, for example:

if (this.frontIsClear())
{ this.move();
} else
{ this.turnLeft();
}

In general,
if («test»)
{ «statementGroup1»
} else
{ «statementGroup2»
}

Consequences: Exactly one group of statements is executed once.
Related Patterns: Once or Not at All is a specialization of this
pattern; Zero or More Times can execute statements repeatedly.

4.
8.

4:
 T

he
 S

im
pl

e
Pr

ed
ic

at
e

Pa
tte

rn

Name: Simple Predicate
Context: A Boolean expression is not easy to read or understand.
Solution: Put the Boolean expression in a method with a meaningful
name. Return the value of the Boolean expression. Such a method is
called a predicate. For example,

public boolean frontIsBlocked()
{ return !this.frontIsClear();
}

In general,
«accessModifier» boolean «predicateName»(«optParameters»)
{ return «a Boolean expression»
}

Consequences: Statements that use the predicate are easier to
understand. The predicate can be easily reused.
Related Patterns: This pattern is often used to define predicates for
use in Once or Not at All and Zero or More Times patterns. This
pattern is a specialization of the more general Predicate pattern
discussed in lesson 05.

Th
e

Pa
ra

m
et

er
iz

ed
 M

et
ho

d
Pa

tte
rn

Name: Parameterized Method
Context: A method might do many variations of its task if it only had
some information from its client to say which variation to perform.
Solution: Use one or more parameters to communicate information
from the client to the method. In general,
«accessModifier» void «methodName»(«paramType1» «paramName1»,
 «paramType2» «paramName2»,
 …
 «paramTypeN» «paramNameN»)
{ «list of statements, at least some using paramNameX»
}

Consequences: A parameterized method is more flexible than similar
unparameterized methods.
Related Patterns: The Parameterless Command and Helper Method
patterns are simplifications of this pattern.

4.
8.

5:
 T

he
 C

ou
nt

-D
ow

n
Lo

op
 P

at
te

rn

Name: Count-Down Loop
Context: You must execute an action a specified number of times.
The number is often given via a parameter.
Solution: Write a while statement that uses a variable, often a
parameter, to count down to zero.

while («variable» > 0)
{ «list of statements»
 «variable» = «variable» - 1;
}

public void plantLine(int length)
{ while (length > 0)
 { this.move();
 this.putThing();
 length = length – 1;
 }
}

Consequences: This pattern performs an action a specified number of
times, even if the number is large.
Related Patterns: This pattern is a special case of the Zero or More
Times pattern.

4.
8.

6:
 T

he
 S

ca
le

 a
n

Im
ag

e
Pa

tte
rn

Name: Scale an Image
Context: An image drawn by the paintComponent method in a
subclass of JComponent needs to scale to different sizes.
Solution: Draw the image based on a predefined grid for the
coordinates. Then use the following code template to use that
coordinate grid while drawing.

public void paintComponent(Graphics g)
{ super.paintComponent(g);
 // Standard code to scale the image
 Graphics2D g2 = (Graphics2D)g;

g2.scale(this.getWidth()/«gridWidth»,
 this.getHeight()/«gridHeight»);

g2.setStroke(new BasicStroke(1.0F/this.getWidth()));

«statements using g2 to draw the image»

}

Consequences: Parameters used by methods such as fillRect are
multiplied by appropriate constants to scale the image.
Related Patterns: This is a specialization of Draw a Picture pattern.

4.
9:

 C
on

ce
pt

 M
ap

Boolean
expressions

evaluate to true, false

if
statementscontrol

statements

m
ay

 b
e e

xe
cu

te
d

on
ce

or
 n

ot
 at

 al
l b

y

while
statements

control

may be executed
zero or more times by

count-down
loops

ar
e s

pe
cia

l
fo

rm
s o

f

predicates

ca
n u

se

answerquestions with

side effectsshould not have

isBesideThing,
frontIsClear

are examples of

queries

are
 sp

eci
al

fo
rm

s o
f

return
statements

getWidth,
getAvenue,

readInt
are examples of

are

ar
e

ca
n u

se give answers with

scaling
images

uses

parameters

may use

argumentrefer to the value passed
in the corresponding

name and
type

are declared with a

if-else
statements

are a generalization of

method
calls

are

Su
m

m
ar

y We have learned:
• how to control which statements are executed, using the following

techniques:
• the if-statement, implementing the Once or Not At All pattern.
• the while-statement, implementing the Zero or More Times

pattern.
• the if-else statement, implementing the Either This or That

pattern.
• that if, while, and if-else statements are controlled using Boolean

expressions.
• that predicates such as frontIsClear are Boolean expressions and

that we can write our own predicates.
• how to use parameters to make methods more flexible.
• how to use parameters in while statements.
• how to scale an image.

